Health

Socio-demographic factors shaping the future global health burden from air pollution

[ad_1]

  • Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Burden by Risk 1990–2019 (Institute for Health Metrics and Evaluation, 2020); http://ghdx.healthdata.org/record/ihme-data/gbd-2019-burden-by-risk-1990-2019

  • Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

    Article 
    CAS 

    Google Scholar 

  • Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017) Burden by Risk 1990–2017 (Institute for Health Metrics and Evaluation, 2018); http://ghdx.healthdata.org/record/ihme-data/gbd-2017-burden-risk-1990-2017

  • Health Impacts of PM2.5 (State of Global Air, 2022); https://www.stateofglobalair.org/health/pm

  • Vohra, K. et al. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: results from GEOS-Chem. Environ. Res. 195, 110754 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).

    Article 
    CAS 

    Google Scholar 

  • Scovronick, N. et al. The impact of human health co-benefits on evaluations of global climate policy. Nat. Commun. 10, 2095 (2019).

    Article 

    Google Scholar 

  • Vandyck, T., Keramidas, K., Tchung-Ming, S., Weitzel, M. & Van Dingenen, R. Quantifying air quality co-benefits of climate policy across sectors and regions. Clim. Change 163, 1501–1517 (2020).

    Article 
    CAS 

    Google Scholar 

  • Markandya, A. et al. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study. Lancet Planet. Health 2, e126–e133 (2018).

    Article 

    Google Scholar 

  • Liang, X. et al. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2, 962–971 (2019).

    Article 

    Google Scholar 

  • Buonocore, J. J. et al. Health and climate benefits of different energy-efficiency and renewable energy choices. Nat. Clim. Change 6, 100–105 (2016).

    Article 

    Google Scholar 

  • Wu, R. et al. Air quality and health benefits of China’s emission control policies on coal-fired power plants during 2005–2020. Environ. Res. Lett. 14, 094016 (2019).

    Article 

    Google Scholar 

  • Gallagher, C. L. & Holloway, T. Integrating air quality and public health benefits in U.S. decarbonization strategies. Front. Public Health 8, 563358 (2020).

    Article 

    Google Scholar 

  • Thompson, T. M., Rausch, S., Saari, R. K. & Selin, N. E. A systems approach to evaluating the air quality co-benefits of US carbon policies. Nat. Clim. Change 4, 917–923 (2014).

    Article 

    Google Scholar 

  • Peng, W., Yang, J., Lu, X. & Mauzerall, D. L. Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China. Appl. Energy 218, 511–519 (2018).

    Article 
    CAS 

    Google Scholar 

  • West, J. J. et al. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3, 885–889 (2013).

    Article 
    CAS 

    Google Scholar 

  • Choma, E. F. et al. Health benefits of decreases in on-road transportation emissions in the United States from 2008 to 2017. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2107402118 (2021).

  • Liu, Y. et al. Population aging might have delayed the alleviation of China’s PM2.5 health burden. Atmos. Environ. 270, 118895 (2021).

    Article 

    Google Scholar 

  • Kruk, M. E. et al. High-quality health systems in the Sustainable Development Goals era: time for a revolution. Lancet Glob. Health 6, e1196–e1252 (2018).

    Article 

    Google Scholar 

  • Chowdhury, S., Dey, S. & Smith, K. R. Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nat. Commun. 9, 318 (2018).

    Article 

    Google Scholar 

  • Yin, H. et al. Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost. Lancet Planet. Health 5, e356–e367 (2021).

    Article 

    Google Scholar 

  • IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., et al.) (Cambridge Univ. Press,Cambridge, UK and New York, NY, USA, 2021).

  • O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    Article 

    Google Scholar 

  • Horowitz, L. W. et al. The GFDL global atmospheric chemistry-climate model AM4.1: model description and simulation characteristics. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2019MS002032 (2020).

  • Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2019MS002015 (2020).

  • Krasting, J. P. et al. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 ScenarioMIP Version 20180701. (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.1414

  • International Futures (IFs) Modeling System V. 7. 45 (Frederick S. Pardee Center for International Futures, Josef Korbel School of International Studies, University of Denver, 2020); https://pardee.du.edu/access-ifs

  • Murray, C. L. et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article 

    Google Scholar 

  • Stanaway, J. D. et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study. Lancet 392, 1923–1994 (2018).

    Article 

    Google Scholar 

  • Hausfather, Z. & Peters, G. P. Emissions – the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ou, Y. et al. Can updated climate pledges limit warming well below 2 °C? Science 374, 693–695 (2021).

    Article 
    CAS 

    Google Scholar 

  • Global Health Impacts of Air Pollution (State of Global Air, 2020).https://www.stateofglobalair.org/sites/default/files/documents/2020-10/soga-2020-report-10-26_0.pdf

  • Coates, M. M. et al. Burden of disease among the world’s poorest billion people: an expert-informed secondary analysis of Global Burden of Disease estimates. PLoS ONE 16, e0253073 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rao, S. et al. Future air pollution in the Shared Socio-economic Pathways. Glob. Environ. Change 42, 346–358 (2017).

    Article 

    Google Scholar 

  • Tibrewal, K. & Venkataraman, C. Climate co-benefits of air quality and clean energy policy in India. Nat. Sustain. 4, 305–313 (2021).

    Article 

    Google Scholar 

  • Fourth National Climate Assessment Vol. II (U.S. Global Change Research Program, 2018); https://doi.org/10.7930/NCA4.2018

  • IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 2022).

  • Feng, L. et al. The generation of gridded emissions data for CMIP6. Geosci. Model Dev. 13, 461–482 (2020).

    Article 
    CAS 

    Google Scholar 

  • Spiller, E., Proville, J., Roy, A. & Muller, N. Z. Mortality risk from PM2:5: a comparison of modeling approaches to identify disparities across racial/ethnic groups in policy outcomes. Environ. Health Perspect. 129, 127004 (2021).

    Article 

    Google Scholar 

  • O’Neill, M. S. et al. Health, wealth, and air pollution: advancing theory and methods. Environ. Health Perspect. 111, 1861–1870 (2003).

    Article 

    Google Scholar 

  • A conversation on the impacts and mitigation of air pollution. Nat. Commun. 12, 5823 (2021).

  • Liu, J. Y. et al. The importance of socioeconomic conditions in mitigating climate change impacts and achieving Sustainable Development Goals. Environ. Res. Lett. 16, 014010 (2020).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The effect of education on determinants of climate change risks. Nat. Sustain. 3, 520–528 (2020).

    Article 

    Google Scholar 

  • Peng, W. et al. Climate policy models need to get real about people – here’s how. Nature 594, 174–176 (2021).

    Article 
    CAS 

    Google Scholar 

  • O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar 

  • Lamontagne, J. R. et al. Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. Earths Future 6, 488–504 (2018).

    Article 

    Google Scholar 

  • van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    Article 

    Google Scholar 

  • Kriegler, E. et al. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Clim. Change 122, 401–414 (2014).

    Article 

    Google Scholar 

  • Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

    Article 

    Google Scholar 

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar 

  • Bauer, N. et al. Shared socio-economic pathways of the energy sector – quantifying the narratives. Glob. Environ. Change 42, 316–330 (2017).

    Article 

    Google Scholar 

  • Turnock, S. T. et al. Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys. 20, 14547–14579 (2020).

    Article 
    CAS 

    Google Scholar 

  • KC, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article 

    Google Scholar 

  • Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).

    Article 

    Google Scholar 

  • Jones, B. & O’Neill, B. C. Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), 2010–2100 (NASA Socioeconomic Data and Applications Center, 2017); https://doi.org/10.7927/H4RF5S0P

  • Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017) Results (Institute for Health Metrics and Evaluation, 2018); http://ghdx.healthdata.org/gbd-results-tool

  • Hughes, B. B. et al. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model. Bull. World Health Organ. 89, 478–486 (2011).

    Article 

    Google Scholar 

  • Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar 

  • Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

    Article 

    Google Scholar 

  • [ad_2]

    Source link

    Related Articles

    Back to top button